PAULTRAP EXPERIMENTS

Content

1. Quantum information processing
2. Quantum metrology

Centre for Duantum
 Quantum information processing

 of SingaporeDuring the past forty years astounding advances have been made in the manufacture of computers. The number of atoms needed to represent a bit in memory has been decreasing exponentially since 1950. Likewise the number of transistors per chip, clock speed, and energy dissipated per logical operation have all followed their own improving exponential trends. This rate of improvement cannot be sustained much longer, at the current rate in the year 2020 one bit of information will requite only one atom to represent it. The problem is that at that size the behavior of a computer's components will be dominated by the principles of quantum physics. (Williams \& Clearwater)
...(T)he first microprocessor only had 22 hundred transistors. We are looking at something a million times that complex in the next generations-a billion transistors. What that gives us in the way of flexibility to design products is phenomenal."
-Gordon E. Moore (1965)

Quantum information processing

Quantum information processing

Classically certain problems are intractable, for example:

- Traveling salesman problem
- Prime number factorization problem

Quantum simulation in a classical computer

Can we solve these problems using quantum mechanics?

Are all problems solvable?
Still an unsolved problem in computational mathematics!!!
D. Hilbert in 1928 : Is there an algorithm to solve any decision problem?
A. Church \& A. Turing in 1936: No

Example of decision problem:
Goldbach's conjecture
Every even integer greater than 2 can be written as the sum of two primes

Quantum information processing

P: Can be solved in Polynomial time NP: Solution can be verified in P-time
NP=P ???

NP-complete

Quantum computation can efficiently solve some of the so-far known hard problems in classical computation

BUT

These problems are not known to be NP-complete

Quantum information processing

Turing machine \& Universal Turing machine

Quantum information processing

	Classical	Quantum
Memory	BIT	QUBIT
Program	Algorithm	Q-algorithm
Processor	Gates	Q-gates

$\mathrm{V}=\mathrm{QC}$

NAND gate

Quantum information processing

Quantum unit of information: Qubit

Any two level quantum mechanical system BUT

- Possibility to initialize
- Robust against external changes
- Possibility to manipulate using external fields
- Scalable
- Possibility to measure the final state

$$
\begin{aligned}
& |q\rangle=a|0\rangle+b|1\rangle \\
& =e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle\right)
\end{aligned}
$$

Quantum information processing

Quantum information processing

Single qubit gates

Hadamard	$\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
Pauli-X	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Y	$\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
Pauli-Z	$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
Phase	$\left[\begin{array}{cc}1 & 1 \\ 1 & e^{i \phi}\end{array}\right]$

П/8

Quantum information processing

Universal 2 qubit gate (C)ontrolled-NOT

$$
\begin{array}{cc}
& \left.\begin{array}{c}
\text { Input } 2 \text { qubits } \\
\\
\left|q_{1}\right\rangle
\end{array} \quad \begin{array}{l}
|00\rangle \\
\\
\\
\left|q_{2}\right\rangle
\end{array} \quad\left|\begin{array}{l}
|10\rangle \\
\end{array}\right| 11\right\rangle
\end{array}
$$

Quantum gate

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Output 2 qubits

$$
\begin{array}{lc}
|00\rangle & \left|q_{1}\right\rangle \\
|01\rangle & \\
|11\rangle & \\
|10\rangle & \left|q_{1}\right\rangle \oplus
\end{array}
$$

Quantum information processing

Quantum information processing

Be-qubit NIST

Quantum information processing

Yb-qubit JQI

Quantum information processing

Optical Qubit:

1. Long lifetime
2. Narrow linewidth lasers
3. even isotopes of alkaline earth elements
4. Rabi frequency $\Omega_{Q T}=\frac{e k}{\hbar}\langle g||\vec{r}|(\vec{E} \cdot \vec{r})|e\rangle$

Quantum information processing

Ca qubit Innsbruck

Quantum information processing

Quantum information processing

Choice of qubit

1																	18
$\begin{gathered} \stackrel{1}{\mathbf{H}} \\ 1.008 \end{gathered}$	2											13	14	15	16	17	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.0026 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$												$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\stackrel{6}{\stackrel{6}{\mathbf{C}}}$	$\underset{14,007}{\stackrel{7}{\mathbf{N}}}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 15.999 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.180 \end{gathered}$
$\begin{gathered} { }_{11} \\ \stackrel{N a}{22.990} \end{gathered}$	$\underset{24.305}{\mathbf{1 2}}$	3	4	5	6	7	8	9	10	11	12	$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.982 \end{gathered}$	$\begin{gathered} 14 \\ \stackrel{14}{\mathbf{S i}} \\ 28.085 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$	$\stackrel{16}{\mathbf{S}}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.078 \end{gathered}$	$\begin{array}{\|c\|} \hline 21 \\ \mathbf{S c} \\ 44.956 \end{array}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.867 \end{gathered}$	$\stackrel{23}{\mathbf{V}_{50.942}}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 51.996 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.938 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.845 \end{gathered}$	$\begin{gathered} 27 \\ \mathrm{Co} \\ 58.933 \end{gathered}$	$\begin{gathered} \stackrel{28}{\mathbf{N i}} \\ 58.693 \end{gathered}$	$\stackrel{29}{\mathrm{Cu}}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.38 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.630 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.922 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.97 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.798 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.468 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{array}{\|c\|} \hline 39 \\ \mathbf{Y} \\ 88.906 \end{array}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.906 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.95 \end{gathered}$	43 Tc (98)	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \mathbf{P d} \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Cd} \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \hline 11482 \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ \mathbf{S n} \\ 118.71 \end{array}$	$\begin{gathered} \stackrel{51}{\mathbf{S b}} \\ 121.76 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.29 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	56 $\mathbf{B a}$ 137.33	57.71	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} \hline 78 \\ \mathbf{P t} \\ 195.08 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { T1 } \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\underset{\#}{89.103}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (265) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (268) \end{gathered}$	$\begin{gathered} 106 \\ \underset{(271)}{\mathbf{S g}} \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (277) \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (276) \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ (281) \end{gathered}$	$\begin{gathered} { }_{c}^{111} \\ \mathbf{R g} \\ (280) \end{gathered}$	$\begin{gathered} 112 \\ \text { Cn } \\ (285) \end{gathered}$	$\begin{gathered} 113 \\ \mathbf{N h} \\ (286) \end{gathered}$	$\begin{gathered} 114 \\ \text { F1 } \\ (289) \end{gathered}$	$\begin{gathered} 115 \\ \mathbf{M c} \\ (289) \end{gathered}$	$\begin{gathered} 116 \\ \mathbf{L v} \\ (293) \end{gathered}$	$\begin{gathered} 117 \\ \text { Ts } \\ (294) \end{gathered}$	$\begin{aligned} & 118 \\ & \mathbf{O g} \end{aligned}$ (294)
$\begin{aligned} & \text { * Lanthanide } \\ & \text { series } \end{aligned}$			$\begin{gathered} 57 \\ \mathbf{L a} \\ 138.91 \\ \hline \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.24 \\ \hline \end{gathered}$	61 Pm (145)	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.36 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.25 \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.93 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.05 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$
\# Actinide			$\begin{gathered} 89 \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (244) \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} \hline 99 \\ \text { Es } \\ (252) \end{gathered}$	$\begin{aligned} & \hline 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{gathered} \hline 101 \\ \mathbf{M d} \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (262) \end{gathered}$

Choice of qubit

1. The relevant transitions should have accessible laser wavelength
2. Light atoms have higher Lamb-Dicke parameter
3. Suitable qubit transition

$$
\eta=k \sqrt{\frac{\hbar}{2 m v_{s e c}}}=\frac{2 \pi}{\lambda} \sqrt{\frac{\hbar}{2 m v_{s e c}}}
$$

Quantum information processing

The recipe

- Initialization

- Quantum state manipulation
- Quantum state measurement

The recipe

- Initialization

- Quantum state manipulation
- Quantum state measurement

Quantum information processing

The recipe

- Initialization

- Quantum state manipulation
- Quantum state measurement

Quantum information processing

Initialization

Step1: Doppler cooling $0.5-1 \mathrm{~ms}$
Goal: reach η << 1

$$
\mathrm{T}=1 \mathrm{~ms}
$$

Quantum information processing

Initialization

Step2: Side-band cooling 1-5 ms
Goal: reach $\overline{\mathrm{n}} \sim 0.1$

$$
\mathrm{T}=1+5 \mathrm{~ms}
$$

Quantum information processing

Step2: Optical pumping $10-100 \mu \mathrm{~s}$ Goal: population in $|g, 0\rangle \geq 99.99 \%$

Quantum information processing

Initialization

Step2: Optical pumping $10-100 \mu \mathrm{~s}$ Goal: population in $|g, 0\rangle \geq 99.99 \%$

Quantum information processing

Measurement

Two ions:

Spatially resolved detection with CCD camera

50 experiments / s
Repeat experiments
100-200 times

Quantum information processing

Measurement / state detection

Problem 10: Considering the optical dipole transition in Ca ion, calculate the number of photons arriving the CCD camera with an overall collection efficiency of 0.1%

Quantum information processing

Measurement / state discrimination

Fluorescence detection

Typical error in state discrimination $<0.1 \%$ within a time of 1 ms

$$
\mathrm{T}=1+5+0.1+1 \mathrm{~ms}
$$

Quantum information processing

Q-state manipulation
Summarize the model:

Quantum information processing

Q-state manipulation

Recap: light-atom interaction
energy levels $|i, n\rangle$

$$
\begin{aligned}
& 1 . \delta=0, H_{c a r}=(h / 4 * \pi) \Omega_{0}\left(\sigma_{+} e^{i \phi}+\sigma_{-} e^{-i \phi}\right) \\
& 2 . \delta=-v, H_{r s b}=(h / 4 * \pi) \Omega_{0} \eta\left(a \sigma_{+} e^{i \phi}+a^{\dagger} \sigma_{-} e^{-i \phi}\right) \\
& \hline 3 . \delta=v, H_{b s b}=(h / 4 * \pi) \Omega_{0} \eta\left(a^{\dagger} \sigma_{+} e^{i \phi}+a \sigma_{-} e^{-i \phi}\right)
\end{aligned}
$$

Quantum information processing

Q-state manipulation - single qubit

$$
\begin{aligned}
& R(\theta, \phi)=\exp \left(\frac{i \theta}{2}\left(e^{i \phi} \sigma_{+}+e^{-\mathrm{i} \phi} \sigma_{-}\right)\right) \\
& R(\theta, \phi)=I \cos \left(\frac{\theta}{2}\right)+i\left(\sigma_{x} \cos (\phi)-\sigma_{y} \sin (\phi)\right) \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

Quantum information processing

Q-state manipulation - single qubit

$$
\begin{aligned}
& \text { (10.0 } \\
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]} \\
& R(\theta, \phi)=\exp \left(\frac{i \theta}{2}\left(e^{i \phi} \sigma_{+}+e^{-\mathrm{i} \phi} \sigma_{-}\right)\right) \\
& R(\theta, \phi)=I \cos \left(\frac{\theta}{2}\right)+i\left(\sigma_{x} \cos (\phi)-\sigma_{y} \sin (\phi)\right) \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

Generation of Bell state

Generation of Bell state

$$
\begin{aligned}
& |D D 1\rangle \quad \begin{array}{l}
\vdots \\
\quad G e n e r a t i o n ~ o f ~ B e l l ~ s t a t e s: ~|S D>~+~| D S>~
\end{array} \\
& |D D 0\rangle \text { - } \\
& \text { Pulse sequence: } \\
& \text { Ion 1: } \pi / 2 \text {, blue sideband }
\end{aligned}
$$

$|S S 0\rangle+|D S 1\rangle$

Generation of Bell state

Generation of Bell states: |SD> + |DS>
Pulse sequence:
Ion 1: $\pi / 2$, blue sideband
Ion 2: $\pi \quad$ carrier

$$
|S D 0\rangle+|D D 1\rangle
$$

Generation of Bell state

$$
(|S D\rangle+|D S\rangle)|0\rangle
$$

Quantum phase

AC Stark shift

$$
a|e\rangle+b|g\rangle \rightarrow|e\rangle+r e^{-\frac{\Delta E}{\hbar} t}|g\rangle
$$

Therefore we can use AC stark shift to generate relative phase

Universal gate - C-NOT

Q-state manipulation - 2 qubit (original CZ gate)

2π on the red side band

$$
|g 1\rangle \rightarrow-|g 1\rangle
$$

Ion \#1
Ion \#2
Ion \#1

Universal gate - C-NOT
Q-state manipulation - 2 qubit (original CZ gate)
2π on the red side band

Phase gate

$$
\begin{aligned}
|g 1\rangle & \rightarrow-|g 1\rangle \\
|g 0\rangle & \rightarrow|g 0\rangle \\
|e 1\rangle & \rightarrow|e 1\rangle \\
|e 0\rangle & \rightarrow|e 0\rangle
\end{aligned}
$$

Ion \#2

Universal gate - C-NOT
Q-state manipulation - 2 qubit (original CZ gate)

$$
\begin{aligned}
& \text { Phase gate } \\
& |e e 0\rangle \rightarrow-|e e 0\rangle \\
& |e e 0\rangle \rightarrow|e g 0\rangle \\
& |e g 0\rangle \rightarrow|e g 0\rangle \\
& R\left(\frac{\pi}{2}, \phi_{i}\right) \\
& |e g 0\rangle \rightarrow|e e 0\rangle \\
& |g e 0\rangle \rightarrow|g e 0\rangle \\
& |g g 0\rangle \rightarrow|g g 0\rangle \\
& |g e 0\rangle \rightarrow|g e 0\rangle \\
& |g g 0\rangle \rightarrow|g g 0\rangle
\end{aligned}
$$

$a .|g\rangle_{m}|g\rangle_{n}|0\rangle-$

$$
\rightarrow|g\rangle_{m}|g\rangle_{n}|0\rangle
$$

$b .|g\rangle_{m}\left|e_{0}\right\rangle_{n}|0\rangle-$
C-NOT gate

$$
\rightarrow|g\rangle_{m}\left|e_{0}\right\rangle_{n}|0\rangle
$$

$c .\left|e_{0}\right\rangle_{m}|g\rangle_{n}|0\rangle-$
$\mathrm{V}^{1 / 2}{ }_{n}(\Pi / 2)$ PGate $V^{1 / 2}{ }_{n}(-\Pi / 2)$
$\rightarrow\left|e_{0}\right\rangle_{m}\left|e_{0}\right\rangle_{n}|0\rangle$
$d .\left|e_{0}\right\rangle_{m}\left|e_{0}\right\rangle_{n}|0\rangle-$
$\rightarrow\left|e_{0}\right\rangle_{m}|g\rangle_{n}|0\rangle$

Universal gate

Q-state manipulation - 2 qubit (A. Sørensen \& K. Mølmer)

Universal gate

Q-state manipulation - 2 qubit (A. Sørensen \& K. Mølmer)

$$
\begin{aligned}
|e e\rangle & \rightarrow(|e e\rangle+i|g g\rangle) / \sqrt{2} \\
|g g\rangle & \rightarrow(|g g\rangle+i|e e\rangle) / \sqrt{ } 2 \\
|e g\rangle & \rightarrow(|e g\rangle+i|g e\rangle) / \sqrt{ } 2 \\
|g e\rangle & \rightarrow(|g e\rangle+i|e g\rangle) / \sqrt{ } 2
\end{aligned}
$$

Consider new basis as $| \pm\rangle_{i}=\left(|e\rangle_{i} \pm|g\rangle_{i}\right) / \sqrt{2}$

Universal gate

Q-state manipulation - 2 qubit (A. Sørensen \& K. MøImer)

It is universal along with single qubit rotation

Universal gate

Geometric phase gates - single qubit

For single qubit these gates are usually produced by adiabatic rotation in Block sphere giving rise to Berry's phase.

For Universal operation, one needs both Abelian and non-Abelian phases

Geometric phase gates - two qubit

Universal gate

Challenges in QC

Suppose we want to drive the sideband at a rate $f \omega_{S}$ (similar to trap frequency) the coupling strength required is

$$
\Omega=\frac{\Omega_{+}}{\eta}=\frac{f \omega_{s}}{\eta}
$$

At this rate the AC Stark shift of the qubit will be

$$
\frac{\Delta E}{\hbar}=\frac{\Omega^{2}}{2 \Delta}=\frac{1}{2 \omega_{s}} \frac{f \omega_{s} \Omega_{+}}{\eta^{2}}=\frac{f}{2 \eta^{2}} \Omega_{+}
$$

This means the phase evolution due to AC Stark shift becomes comparable to Ω_{+}already for $\mathrm{f}=\eta^{2}$

Universal gate Challenges in QC

1. Gate fidelity
2. Gate time
3. Scalability

References for day 4:

(look also for references within the review)

1. D. Leibfried et al. Rev. Mod. Phys. 75, 281 (2003)
2. Molmer and Sorensen Phys. Rev. Lett. 82, 1835 (1999)
3. D. Kielpinski et al. Nature 417, 709 (2002)

Quantum metrology

Entanglement in metrology: an example
Application of magnetic field

Ca atomic levels

Calcium atomic level when trapped

C. F. Roos et al. Nature 443316 (2006)

Quantum metrology

Entanglement in metrology: an example
b $\quad m=-5 / 2 \quad-3 / 2 \quad-1 / 2+1 / 2+3 / 2+5 / 2$

c $m=-5 / 2 \quad-3 / 2 \quad-1 / 2+1 / 2+3 / 2+5 / 2$

Quadrupole shift measurement in Ca^{+}
C. F. Roos et al. Nature 443316 (2006)

Quantum metrology

$$
\begin{array}{ll}
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|u_{1}\right\rangle\left|u_{2}\right\rangle+\left|v_{1}\right\rangle\left|v_{2}\right\rangle\right) & \text { initial state } \\
|\psi(\tau)\rangle=\frac{1}{\sqrt{2}}\left(\left|u_{1}\right\rangle\left|u_{2}\right\rangle+e^{i \lambda_{\phi} \tau}\left|v_{1}\right\rangle\left|v_{2}\right\rangle\right) & \text { evolution of the state with time } \\
\lambda_{\phi}=\frac{\left[\left[E_{u 1}+E_{u 2}\right)-\left(E_{v 1}+E_{v 2}\right)\right]}{\hbar} & \text { measuring the phase provides } \\
& \text { information about the energy difference }
\end{array}
$$

De-coherence free sub-space (DFS) chosen as

$$
|\psi(\tau)\rangle=\frac{1}{\sqrt{2}}\left(\left|-\frac{5}{2}\right\rangle\left|+\frac{3}{2}\right\rangle+\left|-\frac{1}{2}\right\rangle\left|-\frac{1}{2}\right\rangle\right)
$$

Not affected by magnetic field
fluctuations

Quantum metrology

Entanglement in metrology: an example

Quadrupole shift measurement in Ca^{+}
C. F. Roos et al. Nature 443316 (2006)

Quantum metrology

Illness of magnetic field fluctuation: an example

Parity measurement:
$P=P_{e}-P_{-} g$

Ramsey measurement on Ba^{+}

The world of traps

References:

Books:

1. Quantum Computation and Quantum Information, Book by Isaac Chuang and Michael Nielsen, Cambridge press
2. Ion traps, book by P. K. Ghosh, Oxford press
3. Principles of ion traps, G. Werth, Springer

Reviews:

1. Leibfried et al. Rev. Mod. Phys. 75, 281 (2003)
2. A. D. Ludlow et al. Rev. Mod. Phys. 87, 637 (2015)

And all the references there in :-)

