Paul trap - eq. of motion

Approximation as per the real linear trap operation:

- Axial confinement is weaker than radial $a_{x}<q_{x}$
- Works close to the origin of $1^{\text {st }}$ stability region $\left|a_{x}\right|, q_{x}^{2} \ll 1$
- Assuming $C_{ \pm 4} \approx 0$

One obtains: $\quad \beta_{x} \approx \sqrt{a_{x}+\frac{q_{x}^{2}}{2}}$
And: $\quad x(t) \approx 2 \mathrm{AC}_{0} \cos \left(\frac{\beta_{x} \Omega}{2} t\right)\left[1-\frac{q_{x}}{2} \cos (\Omega t)\right]$

$$
=2 A C_{0} \cos \left(\frac{\beta_{x} \Omega}{2} t\right)-\frac{2 A C_{0} q_{x}}{2} \cos \frac{\beta_{x} \Omega}{2} t \cos \Omega t
$$

Micro motion
Secular motion

Paul trap - eq. of motion

$$
x(t)=2 A C_{0} \cos \left(\frac{\beta_{x} \Omega}{2} t\right)-\frac{2 A C_{0} q_{x}}{2} \cos \frac{\beta_{x} \Omega}{2} t \cos \Omega t
$$

Micro motion

Pseudo-potential approximation

The mean displacement of the ion is negligible within time $\frac{1}{\Omega}$
The total displacement is composed of secular and micro-motion parts

$$
x=x_{s}+x_{\mu} \quad \text { reminder } x(t) \approx 2 A C_{0} \cos \left(\frac{\beta_{x} \Omega}{2} t\right)\left[1-\frac{q_{x}}{2} \cos (\Omega t)\right]
$$

Secular displacement is large but frequency is slow as compared to micro-motion

$$
x_{s} \gg x_{\mu} \quad \dot{x}_{s} \ll \dot{x}_{\mu}
$$

The time-dependent motion in x is

$$
\begin{equation*}
\ddot{x_{\mu}}=-\left(a_{x}-2 q_{x} \cos 2 \zeta\right) x_{s} \tag{1}
\end{equation*}
$$

reminder $\ddot{x}+\left(a_{x}-2 q_{x} \cos 2 \zeta\right) x=0$

$$
a_{x} \ll q_{x}
$$

Integrating over time

$$
x_{\mu}=-\frac{q_{x}}{2} \cos 2 \zeta x_{s}
$$

Pseudo-potential approximation

Therefore the amplitude of motion is:

$$
x=x_{s}-\frac{q_{x}}{2} \cos 2 \zeta x_{s}
$$

Substituting in $\ddot{x}+\left(a_{x}-2 q_{x} \cos 2 \zeta\right) x=0$:

$$
\begin{gathered}
\ddot{x}=-\left(a_{x}-2 q_{x} \cos 2 \zeta\right)\left(1-\frac{q_{x}}{2} \cos 2 \zeta\right) x_{s} \\
=-a_{x} x_{s}-q_{x}^{2} \cos ^{2} 2 \zeta x_{s}+2 q_{x} \cos 2 \zeta x_{s}+\frac{q_{x} a_{x}}{2} \cos 2 \zeta x_{s}
\end{gathered}
$$

Averaging over one cycle of RF:

$$
\begin{aligned}
<\ddot{x}_{s}> & =-\left(a_{x}+\frac{q_{x}^{2}}{2}\right) x_{s} \\
\left|\frac{d^{2} x_{s}}{d t^{2}}\right\rangle & =-\left(a_{x}+\frac{q_{x}^{2}}{2}\right) \frac{\Omega^{2}}{4} x_{s}
\end{aligned}
$$

Reminder: $\zeta=\frac{\Omega t}{2}$

Pseudo-potential approximation

From pseudo potential model one obtains:

$$
\left|\frac{d^{2} x_{s}}{d t^{2}}\right\rangle=-\left(a_{x}+\frac{q_{x}^{2}}{2}\right) \frac{\Omega^{2}}{4} x_{s}=-\frac{\beta_{x}^{2} \Omega^{2}}{4} x_{s}=-\omega_{x}^{2} x_{s}
$$

From solving the Mathieu equation one obtains :

$$
x(t)=2 A C_{0} \cos \left(\frac{\beta_{x} \Omega}{2} t\right)-\frac{2 A C_{0} q_{x}}{2} \cos \frac{\beta_{x} \Omega}{2} t \cos \Omega t
$$

Therefore they match and we observe that the motion is a simple harmonic oscillator motion

$$
\begin{aligned}
& \text { Problem 5: Prove that the pseudo-potential trap depth is } \bar{D}_{x}=\frac{e V_{0}^{2}}{4 m r_{0}^{2} \Omega^{2}} \text { considering } \\
& a_{x}=0 .
\end{aligned}
$$

QM treatment

The trap potential may be written as :

$$
\hat{V}(t)=\frac{m}{2} W(t) \hat{x}^{2} \quad \text { where } \quad W(t)=\frac{\omega_{r f}^{2}}{4}\left[a_{x}+2 q_{x} \cos \left(\omega_{r f} t\right)\right]
$$

With these definition the Hamiltonian looks :

$$
\widehat{H}^{m}=\frac{\hat{p}^{2}}{2 m}+\frac{m}{2} W(t) \hat{x}^{2}
$$

$$
\text { Reminder: } \mathrm{u}(\zeta)=A e^{\left\{i \beta_{x} \zeta\right\}} \sum_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{i 2 n \zeta\}}+B e^{\left\{-i \beta_{x} \zeta\right\}} \sum_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{-i 2 n \zeta\}}
$$

of Singapore

QM treatment

$\widehat{H}^{m}=\frac{\hat{p}^{2}}{2 m}+\frac{m}{2} W(t) \hat{x}^{2}$
The equation of motion of the operators in Heisenberg picture are:
$\dot{\hat{x}}=\frac{1}{i \hbar}\left[\hat{x}, \widehat{H}^{m}\right]=\frac{\hat{p}}{m} \quad \dot{\hat{p}}=\frac{1}{i \hbar}\left[\hat{p}, \widehat{H}^{m}\right]=-m W(t) \hat{x}$
By combining we obtain:
$\ddot{\hat{x}}+W(t) \hat{x}=0$

This is equivalent to Mathieu equation (not surprising!!) provided \hat{x}_{-}is replace by $u(t)$ function. So to solve this Hamiltonian, we use the special solution of Mathieu equation subject to boundary conditions

$$
\text { Reminder: } u(\zeta)=A e^{\left\{i \beta_{x} \zeta\right\}} \Sigma_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{i 2 n \zeta\}}+B e^{\left\{-i \beta_{x} \zeta\right\}} \Sigma_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{-i 2 n \zeta\}}
$$

QM treatment

Reminder: $\mathrm{u}(\zeta)=A e^{\left\{i \beta_{x} \zeta\right\}} \Sigma_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{i 2 n \zeta\}}+B e^{\left\{i \beta_{x} \zeta\right\}} \Sigma_{\{n=-\infty\}}^{\infty} C_{2 n} e^{\{-i 2 n \zeta\}}$

$$
u(0)=1, \quad \dot{u}(0)=i v
$$

These boundary condition implies $A=1, B=0$

$$
u(t)=e^{\frac{i \beta_{x} \omega_{r f} t}{2}} \Sigma_{n=-\infty}^{\infty} C_{2 n} e^{i n \omega_{r f} t}=e^{\frac{i \beta_{x} \omega_{r f} t}{2}} \Phi(t)
$$

Periodic with period $T=\frac{2 \pi}{\omega_{r f}}$
Therefore the coefficients takes the form:

$$
\begin{array}{ll}
\Sigma_{n=-\infty}^{\infty} C_{2 n}=1 & u(0)=1 \\
v=\omega_{r f} \Sigma_{n=-\infty}^{\infty} C_{2 n}\left(\frac{\beta_{x}}{2}+n\right) & \dot{u}(0)=i v
\end{array}
$$

This solution and its complex conjugate are linearly independent and hence they obey Worskian identity

QM treatment

This solution and its complex conjugate are linearly independent and hence they obey Wronskian identity

$$
u^{*}(t) \dot{u}(t)-u(t) \dot{u}^{*}(t)=u^{*}(0) \dot{u}(0)-u(0) \dot{u}^{*}(0)=2 i v
$$

Similar argument holds for $\hat{x}(t)$ and $u(t)$ as both obey the same differential equations, so a complex linear combination as
$\hat{C}(t)=\sqrt{\frac{m}{2 \hbar v}} i\{u(t) \dot{\hat{x}}(t)-\dot{u}(t) \hat{x}(t)\}$

Is also proportional to their Wronskian identity and also constant in time

QM treatment

$$
\hat{C}(t)=\hat{C}(0)=\sqrt{\frac{1}{2 m \hbar v}}\{m v \hat{x}(0)+i \hat{p}(0)\}
$$

This is familiar annihilation operator of static HO of mass m and frequency v

$$
\hat{C}(t)=\hat{C}(0)=\hat{a} \quad \text { Implies } \quad\left[\hat{C}, \hat{C}^{T}\right]=\left[\hat{a}, \hat{a}^{T}\right]=1
$$

This oscillator which is time independent is known as the reference oscillator

$$
\begin{aligned}
& \hat{x}(t)=\sqrt{\frac{\hbar}{2 m v}}\left\{\hat{a} u^{*}(t)+\hat{a}^{T} u(t)\right\} \\
& \hat{p}(t)=\sqrt{\frac{\hbar m}{2 v}}\left\{\hat{a} \dot{u}^{*}(t)+\hat{a}^{T} \dot{u}(t)\right\}
\end{aligned}
$$

$\square+\left\lvert\, \begin{aligned} & \text { Centre for } \\ & \text { Ouantum } \\ & \text { Technolog }\end{aligned}\right.$
 Ion trapping - the steps

Atomic oven - resistive heating

Ion trapping - the steps

Trap assembly - UHV protocols

$\square=\square \left\lvert\, \begin{aligned} & \text { Centre for } \\ & \text { Ouantum } \\ & \text { Terhnologies }\end{aligned}\right.$
 Ion trapping - the steps

Trap assembly - UHV protocols

Ion trapping - the steps

Ion creation - in-situ

1. Electron impact
2. Surface ionization
3. Resonant laser ionization
4. etc.

Example for Ba^{+}

Ion trapping - the steps

Ion trap drive

Ion trapping - the steps

Ion imaging

Ion trapping - the steps

Is there ion?

Ion trapping - the steps

Smart phone image - not Apple!!

Ion trapping - the next steps

A EM CCD image

MAKING OF A QUBIT

Content

1. Light matter interaction
2. Cooling of ions
3. Single qubit operations
4. Multi-qubit operations

Light matter interaction

Time dependent SE

Stationary states of atom

$$
H_{0}\left|\phi_{k}\right\rangle=E_{k}\left|\phi_{k}\right\rangle
$$

$$
\begin{aligned}
& i \hbar \frac{\partial|\psi(\vec{r}, t)\rangle}{\partial t}=H(t)|\psi(t)\rangle \\
& i \hbar \frac{\partial|\psi\rangle}{\partial t}=\left[H_{0}+H^{\prime}(t)\right]|\psi\rangle \\
& \text { atom }
\end{aligned}
$$

Any state in the atomic basis

$$
|\psi\rangle=\Sigma_{k} c_{k}\left|\phi_{k}\right\rangle
$$

Plugging back to TDSE

$$
i \hbar \frac{\partial}{\partial t} \Sigma_{k} c_{k}\left|\phi_{k}\right\rangle=\left[H_{0}+H^{\prime}(t)\right] \Sigma_{k} c_{k}\left|\phi_{k}\right\rangle
$$

Multiplying both sides by $\left\langle\phi_{j}\right|$ on both sides

$$
i \hbar \frac{\partial}{\partial t} c_{j}(t)=\Sigma_{k} H_{j k}^{\prime} c_{k}(t) e^{i \omega_{j k} t}
$$

$$
\begin{gathered}
H_{j k}^{\prime}=\left\langle\phi_{j}\right| H^{\prime}(t)\left|\phi_{k}\right\rangle \\
\omega_{j k}=\left(\omega_{j}-\omega_{k}\right)
\end{gathered}
$$

$$
i \hbar \frac{\partial}{\partial t} c_{j}(t)=\Sigma_{k} H_{j k}^{\prime} c_{k}(t) e^{i \omega_{j k} t}
$$

This equation is exact but not possible to solve without approximating

We are interested in laser light interacting with an atom. Therefore assuming the laser to be of single frequency and addressing only two states of the atom. Therefore truncate the summation to only two states:

Two-level system interacting with light:

$$
\begin{aligned}
& i \hbar \frac{d c_{g}(t)}{d t}=c_{e}(t) H_{g e}^{\prime}(t) e^{-i \omega_{a} t} \\
& i \hbar \frac{d c_{e}(t)}{d t}=c_{g}(t) H_{e g}^{\prime}(t) e^{i \omega_{a} t}
\end{aligned}
$$

$$
\begin{aligned}
& j=g ; k=e \text { ground and excited state } \\
& \omega_{a}=\omega_{e}-\omega_{g} \text { atomic resonance frequency }
\end{aligned}
$$

Now we need to calculate the exact form of $H_{g e}^{\prime}(t)$ for light matter interaction (2-level approximation)
$H=\frac{P^{2}}{2 m}+V(r)$
KE
Coulomb energy

$$
\begin{aligned}
& \text { Reminder (EM-II): } \\
& \vec{A}(\vec{r}, t)=\left(A_{0} \widehat{\epsilon}_{Z} e^{i(k y-\omega t)}+A_{0}^{*} \widehat{\epsilon}_{z} e^{-i(k y-\omega t)}\right) \\
& \frac{E}{2}=-\frac{\partial A}{\partial t}=i \omega A_{0} \\
& \frac{B}{2}=\nabla \times A=i k A_{0}
\end{aligned}
$$

$$
\begin{aligned}
& H=\frac{(P-e A)^{2}}{2 m}+V(r)-\frac{e}{m} \vec{S} \cdot \vec{B} \\
& =\frac{P^{2}}{2 m}+V(r)+\frac{e^{2} A^{2}}{2 m}-\frac{e}{2 m}(\vec{P} \cdot \vec{A}+\vec{A} \cdot \vec{P})-\frac{e}{m} \vec{S} \cdot \vec{B}
\end{aligned}
$$

B field spin interaction

Energy of EM field

E field - charge interaction

$$
\begin{align*}
& H=\frac{(P-e A)^{2}}{2 m}+V(r)-\frac{e}{m} \vec{S} \cdot \vec{B} \\
& =\frac{P^{2}}{2 m}+V(r)+\frac{e^{2} A^{2}}{2 m}-\frac{e}{2 m}(\vec{P} \cdot \vec{A}+\vec{A} \tag{P}
\end{align*}
$$

$=H_{0}-\frac{e}{m} \vec{P} \cdot \vec{A}$
$=H_{0}-\frac{e}{m} P_{z}\left[A_{0} e^{i k y} e^{-i \omega t}-A_{0}^{*} e^{-i k y} e^{i \omega t}\right]$
Dipole approximation only $1^{\text {st }}$ term is kept

Expanding the exponential factor

$$
e^{ \pm i k y}=e^{ \pm \frac{i 2 \pi y}{\lambda}}=1 \pm i k y-\frac{k^{2} y^{2}}{2} \ldots
$$

$=H_{0}-\frac{e E}{m \omega} P_{z} \sin \omega t$
By proper choice of gauge it can be shown to be equivalent to
$=H_{0}-e \vec{E} \cdot \vec{r}$
$=H_{0}+H_{I}$
American Journal of Physics 50, 128 (1982)

Two most important interactions are electric dipole and electric quadrupole

$$
\begin{aligned}
& H_{D}=e \vec{E} \cdot \vec{r} \\
& H_{Q}=e Q_{i j} \frac{\partial E_{i}}{\partial x_{j}}=\frac{1}{2} e\left(x_{i} x_{j}-\frac{1}{3} \delta_{i j} x^{2}\right)=\frac{1}{2} e k z(\vec{E} \cdot \vec{z})\left[i e^{i(k y-\omega t)}+c . c .\right]
\end{aligned}
$$

In matrix representation in the basis of $|e\rangle$ and $|g\rangle$

$$
H_{D / Q}=\hbar \Omega_{0}^{D / Q}(|g\rangle\langle e|+|e\rangle\langle g|) \times\left[e^{i(k x-\omega t+\phi)}+e^{-i(k x-\omega t+\phi)}\right] .
$$

Where,

$$
\begin{array}{ll}
\frac{\hbar}{2} \Omega_{0}^{D}=e\langle g| \vec{E} \cdot \vec{r}|e\rangle & \text { Dipole transition } \\
\frac{\hbar}{2} \Omega_{0}^{Q}=\frac{e k}{2}\langle g||\vec{r}|(\vec{E} \cdot \vec{r})|e\rangle & \text { Quadrupole transition } \\
\frac{\hbar}{2} \Omega_{0}^{R T}=-\hbar \frac{\left|\Omega_{g 3} \Omega_{e 3}\right|}{\Delta_{R}} e^{i \Delta \phi} & \text { Two photon Raman transition }
\end{array}
$$

138Ba+ lon Energy Level @ $\mathrm{D}_{5 / 2}$

- $\mathrm{S}_{1 / 2}-\mathrm{D}_{5 / 2}$ transition
$1762.1745 \mathrm{~nm}(170.12643 \mathrm{THz})$
т:34.5 sec.

Scanning Zeeman States

- Scan 20 MHz range.
- B field - Laser beam : 45°
- B field - beam polarization : 45°
- X axis is the frequency detuning.

Frequency(MHz)

Total Hamiltonian: trapped 2-level ion

$$
\begin{aligned}
& H=H_{\text {atom }}+H_{\text {trap }}+H_{I} \\
& =H_{0}+H_{I}
\end{aligned}
$$

Atomic Hamiltonian:

$$
\begin{aligned}
& H_{\text {atom }}=\frac{\hbar}{2} \omega_{a}(|e\rangle\langle e|-|g\rangle\langle g|)=\frac{\hbar}{2} \omega_{a} \sigma_{z} \\
& H_{\text {trap }}=\frac{\hat{p}^{2}}{2 m}+\frac{m}{2}\left(\frac{\Omega_{r f}^{2}}{4}\left(a_{x}+2 q_{x} \cos \left(\Omega_{\mathrm{rf}} t\right)\right)\right) \hat{x}^{2}
\end{aligned}
$$

The solution of the unperturbed Hamiltonian is completely known, therefore

Total Hamiltonian: trapped 2-level ion

Total Hamiltonian: trapped 2-level ion

The concept

H_{I} in interaction picture is:

$$
H_{\text {inter }}=U_{0}^{\dagger} H_{I} U_{0}
$$

$$
\text { Reminder } U_{0}=e^{-\frac{i}{\hbar} \overleftarrow{F}_{0} t}
$$

$$
=\frac{\hbar}{2} \Omega e^{\frac{i}{\hbar} H_{\text {atom }} t}\left(\sigma_{+}+\sigma_{-}\right) e^{-\frac{i}{\hbar} H_{\text {atom }} t} \times e^{\frac{i}{\hbar} H_{\text {trap }} t}\left[e^{i(k \hat{x}-\omega t+\phi)}+e^{-i(k \hat{x}-\omega t+\phi)}\right] e^{-\frac{i}{\hbar} H_{\text {trap }} t}
$$

Baker-Campbell-Hausdorff formula
Reminder: $e^{X} Y e^{-X}=Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\cdots$

$$
=\frac{\hbar}{2} \Omega\left(\sigma_{+} e^{i \omega_{a} t}+\sigma_{-} e^{-i \omega_{a} t}\right) \times e^{\frac{i}{\hbar} H_{t r a p} t}\left[e^{i(k \hat{x}-\omega t+\phi)}+e^{-i(k \hat{x}-\omega t+\phi)}\right] e^{-\frac{i}{\hbar} H_{t r a p} t}
$$

- Rotating wave approximation for $\left(\omega_{a} \pm \omega\right)$
- The transformation of $H_{\text {trap }}$ to interaction picture is same as converting to

Heisenberg picture meaning $\hat{x} \rightarrow \hat{x}(t)$

$$
\hat{x}(t)=\sqrt{\frac{\hbar}{2 m v_{s e c}}}\left(\hat{a} u^{*}(t)+\hat{a}^{\dagger} u(t)\right)
$$

Therefore we obtain:

$$
H_{\text {inter }}=\frac{\hbar}{2} \Omega \sigma_{+} e^{i\left(\phi+\eta\left[\hat{a} u^{*}(t)+\hat{a}^{\dagger} u(t)\right]-\delta t\right)}+\text { h.c. }
$$

$$
H_{\text {inter }}=\frac{\hbar}{2} \Omega \sigma_{+} e^{i\left(\phi+\eta\left[\hat{a} u^{*}(t)+\hat{a}^{\dagger} u(t)\right]-\delta t\right)}+\text { h.c. }
$$

Further simplification can be done by considering the parameter regime in which a linear trap works:

$$
\begin{aligned}
& \left(\left|a_{x}\right|, q_{x}^{2}\right) \ll 1 \equiv \beta_{x} \omega_{r f} \sim v \\
& C_{0} \sim\left(1+\frac{q_{x}}{2}\right)^{-1}
\end{aligned}
$$

$$
H_{\text {inter }}(t)=\frac{\frac{\hbar}{2} \Omega}{1+\frac{\mathrm{q}_{\mathrm{X}}}{2}} \sigma_{+} e^{i \eta\left(\hat{a} e^{-i v t}+\hat{a}^{\dagger} e^{i v t}\right)} e^{i(\phi-\delta t)}+\text { h.c. }
$$

$$
=\frac{\hbar}{2} \Omega_{0} \sigma_{+} e^{i \eta\left(\hat{a} e^{-i v t}+\hat{a}^{\dagger} e^{i v t}\right)} e^{i(\phi-\delta t)}+h . c .
$$

Special case: Lamb-Dicke regime
Spread of the wave packet~ 10 nm
$\eta=k \sqrt{\frac{\hbar}{2 m v_{s e c}}}=\frac{2 \pi}{\lambda} \sqrt{\frac{\hbar}{2 m v_{s e c}}}$
Wavelength of probe light~ 500 nm

$$
\eta \ll 1
$$

$$
H_{\text {inter }}(t)=\frac{\hbar}{2} \Omega_{0} \sigma_{+}\left(1+i \eta\left(\hat{a} e^{-i v t}+\hat{a}^{\dagger} e^{i v t}\right)\right) e^{i(\phi-\delta t)}+h . c .
$$

Three cases of importance:
Carrier $(\delta=0)$:

$$
H_{c}=\frac{\hbar}{2} \Omega_{0}\left(\sigma_{+} e^{i \phi}+\sigma_{-} e^{-i \phi}\right)
$$

Red Side Band (RSB) $(\delta=-v)$:

$$
H_{c}=\frac{\hbar}{2} \Omega_{0} \eta\left(\hat{a} \sigma_{+} e^{i \phi}+\hat{a}^{\dagger} \sigma_{-} e^{-i \phi}\right)
$$

$$
\Omega_{n, n-1}=\Omega_{0} \sqrt{n} \eta
$$

Blue Side Band (BSB) $(\delta=+v)$:

$$
H_{c}=\frac{\hbar}{2} \Omega_{0} \eta\left(\hat{a}^{\dagger} \sigma_{+} e^{i \phi}+\hat{a} \sigma_{-} e^{-i \phi}\right)
$$

$$
\Omega_{n, n+1}=\Omega_{0} \sqrt{n+1} \eta
$$

Carrier and Side-band

Higher order sidebands $\delta=l v$ with $|l| \geq 1$
These involve two-"phonons"

$$
H_{c}=\frac{\hbar}{2} \Omega_{0} \frac{\eta^{2}}{2}\left(\hat{a}^{2} \sigma_{+} e^{i \phi}+\hat{a}^{\dagger^{2}} \sigma_{-} e^{-i \phi}\right)
$$

For $l=-2$, since it depends on η^{2} the coupling strength is very low

Resolved sideband

$\delta=l v+\delta^{\prime}$ where $\delta^{\prime} \ll v$
$|\psi(t)\rangle=\sum_{n=0}^{\infty} c_{n, g}(t)|n, g\rangle+c_{n, e}(t)|n, e\rangle$
$i \hbar \partial_{t}|\psi(t)\rangle=\widehat{H}_{\text {int }}|\psi(t)\rangle \quad$ [time dependent $\left.S E\right]$
$\dot{c}_{n, g}=-i^{1-|l|} e^{i\left(\delta^{\prime} t-\phi\right)}\left(\frac{\Omega_{n+l, n}}{2}\right) c_{n+l, e}$
$\dot{c}_{n+l, e}=-i^{1+|l|} e^{-i\left(\delta^{\prime} t-\phi\right)}\left(\frac{\Omega_{n+l, n}}{2}\right) c_{n, g}$
Laplace transform to solve:
$\left[\begin{array}{c}c_{(n+l, e)}(t) \\ c_{(n, g)}(t)\end{array}\right]=T_{n}^{l}\left[\begin{array}{c}c_{n+l, e}(0) \\ c_{n, g}(0)\end{array}\right] \quad$ Solutions to TDSE

Resolved sideband

$$
\begin{aligned}
& T_{n}^{l}=\left\{\begin{array}{ll}
e^{-i\left(\frac{\delta^{\prime}}{2}\right) t}\left[\cos \left(\frac{f_{n}^{\prime} t}{2}\right)+\frac{i \delta^{\prime}}{f_{n}^{\prime}} \sin \left(\frac{f_{n}^{\prime} t}{2}\right)\right] & -i \frac{\Omega_{n+l, n}}{f_{n}^{l}} e^{i\left(\phi+\frac{|l| \pi}{2}-\frac{\delta^{\prime} t}{2}\right)} \sin \left(\frac{f_{n}^{\prime} t}{2}\right) \\
-i \frac{\Omega_{n+l, n}}{f_{n}^{l}} e^{-i\left(\phi+\frac{|l| \pi}{2}-\frac{\delta^{\prime} t}{2}\right)} \sin \left(\frac{f_{n}^{\prime} t}{2}\right) & e^{i\left(\frac{\delta^{\prime}}{2}\right) t\left[\cos \left(\frac{f_{n}^{\prime} t}{2}\right)-\frac{i \delta^{\prime}}{f_{n}^{\prime}} \sin \left(\frac{f_{n}^{\prime} t}{2}\right)\right]}
\end{array}\right\} \\
& f_{n}^{\prime}=\sqrt{\delta^{\prime 2}+\Omega_{n+l, n}^{2}}
\end{aligned}
$$

- Rabi oscillation between the $|n, g\rangle$ and $|e, n+l\rangle$
- Side-band cooling / ground state cooling
- Single qubit operation

Resolved sideband

Un-resolved sideband

Master equation for 2-level atom in equilibrium with thermal reservoir (master eq. with spontaneous emission given by Liouvillian) :
$\frac{d \rho}{d t}=-\frac{i}{\hbar}\left[\widehat{H}_{\text {trap }}+\widehat{H}_{\text {atom }}+\widehat{H}_{I}, \rho\right]+L^{d} \rho$
where,
$L^{d} \rho=\frac{\Gamma}{2}\left(2 \sigma^{-} \rho^{\prime} \sigma^{+}-\sigma^{+} \sigma^{-} \rho-\rho \sigma^{+} \sigma^{-}\right)$
where,
$\rho^{\prime}=\frac{1}{2} \int_{-1}^{1} d z Y(z) e^{i k \hat{x} z} \rho e^{-i k \hat{x} z}$ where, $Y(z)=\frac{3\left(1+z^{2}\right)}{4}$

- Laser Doppler cooling
- Electro-magnetically induced transparency

Doppler cooling

$$
\begin{array}{ll}
V_{p}(x)=\frac{1}{2} m v^{2} x^{2} & \text { Pseudo potential (day-I) } \\
v(t)=v_{0} \cos (v t) & \text { Classical velocity } \\
\left(\frac{d P}{d t}\right)_{a v}=F_{a v}=\hbar k \Gamma \rho_{e e} & \text { Rate of change of momentum } \\
\rho_{e e}=\frac{\frac{s}{2}}{1+s+\left(\frac{2 \delta_{e f f}}{\Gamma}\right)^{2}} & \text { excited state population } \\
s=\frac{2|\Omega|^{2}}{\Gamma^{2}} & \text { saturation parameter } \\
\delta_{e f f}=\left(\omega_{l}-\omega_{a t}\right)-\vec{k} \cdot \vec{v} & \text { effective detuning }
\end{array}
$$

Doppler cooling - the drag

$F_{a v}=\hbar k \Gamma \rho_{e e}$
$F_{a v}=F_{0}(1+\kappa v) \quad$ linearizing force in terms of velocity
where
$F_{0}=\frac{\hbar k \Gamma \frac{s}{2}}{1+\mathrm{s}+\left(\frac{2 \Delta}{\Gamma}\right)^{2}}$
$\kappa=\frac{\frac{8 k \Delta}{\Gamma^{2}}}{1+s+\left(\frac{2 \Delta}{\Gamma}\right)^{2}}$
definition of force that displaces the ion
definition of the friction

So we have generated a viscous drag force provided $\Delta<0$

Doppler cooling - rate and final temp.

$$
\dot{E}_{c}=\left\langle F_{a v} v\right\rangle=F_{0}\left(\langle v\rangle+\kappa\left\langle v^{2}\right\rangle\right)=F_{0} \kappa\left\langle v^{2}\right\rangle \quad \text { cooling rate }
$$

$$
\dot{E}_{h}=\frac{1}{2 m} \frac{d}{d t}\left\langle P^{2}\right\rangle=\dot{E}_{a b s}+\dot{E}_{\text {emit }} \quad \text { sum of abs. and emiss. rate }
$$

$$
=\dot{E}_{a b s}(1+\xi) \approx \frac{1}{2 m}(\hbar k)^{2} \Gamma \rho_{e e}(v=0)(1+\xi) \quad \text { heating rate }
$$

$$
m\left\langle v^{2}\right\rangle=k_{B} T=\frac{\hbar \Gamma}{8}(1+\xi)\left[\frac{(1+s) \Gamma}{2 \Delta}+\frac{2 \Delta}{\Gamma}\right] \quad \text { final energy }
$$

$$
T_{D L}=\frac{\hbar \Gamma \sqrt{1+s}}{4 k_{B}}(1+\xi)
$$

Best results

Doppler cooling - profile

Carrier and Side-band

Resolved sideband

Expanding in terms of η and keeping upto the second term

$$
\begin{aligned}
& \widehat{H}_{\text {inter }}^{L D}(t)=\frac{\hbar}{2} \Omega\left[\hat{\sigma}_{+} e^{-i \delta t}+h . c .\right] \text { Carrier with rabi frequency } \Omega \\
& +\frac{\hbar}{2} \Omega\left\{\sum_{n=-\infty}^{\infty} i \eta C_{2 n} \hat{\sigma}_{+} e^{-i \delta t} \times\left[\hat{a} e^{-i\left(v+n \Omega_{r f}\right) t}+\hat{a}^{\dagger} e^{i\left(v+n \Omega_{r f}\right) t}\right]\right. \\
& + \text { h.c. }\}
\end{aligned}
$$

Condition for validity of resolved sideband

$$
\Omega_{r f} \ll v \ll \tilde{\Gamma}
$$

Sideband cooling to ground state

Adjust detuning $\delta=\omega-\omega_{a}=-v(n=0)$

$$
\begin{aligned}
& H_{\text {inter }}^{L D}=\frac{\hbar}{2} \Omega\left[\hat{\sigma}_{+} e^{i v t}+\hat{\sigma}_{-} e^{-i v t}+i \eta\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right)\right. \\
& \left.+i \eta\left(\hat{\sigma}_{+} \hat{a}^{\dagger} e^{i 2 v t}+\hat{\sigma}_{-} \hat{a} e^{-i 2 v t}\right)\right]
\end{aligned}
$$

Cooling rate:

$$
\begin{aligned}
R_{n}= & \text { excited state occpancy probability }\left(P_{e}(n)\right) \\
& \times \text { decay rate }
\end{aligned}
$$

Sideband cooling to ground state

Cooling rate

$$
\begin{aligned}
& R_{n}= \text { excited state occpancy probability }\left(P_{e}(n)\right) \\
& \times \text { decay rate } \\
& R_{n}=\tilde{\Gamma} P_{e}(n)=\tilde{\Gamma} \frac{(\eta \sqrt{n} \Omega)^{2}}{2(\eta \sqrt{n} \Omega)^{2}+\tilde{\Gamma}^{2}}
\end{aligned}
$$

－The rate is depended on n
－The rate vanishes as $\mathrm{n}=0$ is approached
－The final motional state is a dark state
－Dominant contribution to heating comes from carrier and $1^{\text {st }}$ blue sideband absroption

Sideband cooling

Restricting to the first two motional states the rate equation (equilibrated heating and cooling):

$$
\begin{aligned}
& \dot{P}_{0}=P_{1} \frac{(\eta \Omega)^{2}}{\tilde{\Gamma}}-P_{0}\left[\left(\frac{\Omega}{2 v}\right)^{2} \tilde{\eta}^{2} \tilde{\Gamma}+\left(\frac{\eta \Gamma}{4 v}\right)^{2} \tilde{\Gamma}\right] \\
& \dot{P}_{1}=-\dot{P}_{0}
\end{aligned}
$$

P_{i} are probabilities to be in state |i>

In steady state $\dot{P}_{i}=0$

$$
\bar{n} \approx P_{1} \approx\left(\frac{\tilde{\Gamma}}{2 v}\right)^{2}\left[\left(\frac{\tilde{\eta}}{\eta}\right)^{2}+\frac{1}{4}\right]
$$

Motional state population

$|\psi(0)\rangle=|g\rangle \Sigma_{n=0}^{\infty} c_{n}|n\rangle \quad$ Initial state
$P_{g}(t)=\langle\psi(t)|\left(|g\rangle\langle g| \otimes \hat{I}_{m}\right)|\psi(t)\rangle$
probability o be in the ground state after excitation
$P_{g}(t)=\frac{1}{2}\left[1+\sum_{n=0}^{\infty} P_{n} \cos \Omega_{n, n+1} t\right]$ after blue sideband excitation
$P_{n}=\left|c_{n}\right|^{2} \quad$ probabilities to be in motional n-state

Motional state after cooling

1. Final state is a thermal state
2. Use $P_{e}(t)=1-P_{g}(t)$
3. Find the probability ratio of red-to-blue sideband excitations

$$
\begin{aligned}
& P_{e}^{R S B}(t)=\sum_{m=1}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{m} \sin ^{2} \Omega_{m, m-1} t \\
& =\frac{\bar{n}}{(\bar{n}+1)} \Sigma_{m=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{m} \sin ^{2} \Omega_{m+1, m} t \\
& =\frac{\bar{n}}{\bar{n}+1} P_{e}^{B S B}(t)
\end{aligned}
$$

$$
R=\frac{P_{e}^{R S B}}{P_{e}^{B S B}}=\frac{\bar{n}}{\bar{n}+1}
$$

Other cooling techniques

Radiative damping (applicable only to electrons in Penning traps) - classical treatment only

$$
-\frac{d E}{d t}=\frac{2 e^{2}}{3 c^{3}} \ddot{\rho}^{2}
$$

$$
\frac{d E}{d t}=-\gamma_{c} E
$$

$$
\begin{aligned}
& \ddot{\rho}=\omega_{c} \times \dot{\rho} \\
& E=\frac{1}{2} m \dot{\rho}^{2} \\
& \gamma_{c}=\frac{4 e^{2} \omega_{c}^{2}}{3 m c^{3}}
\end{aligned}
$$

$E(t)=E_{0} e^{-\gamma_{c} t}$
Introducing for an electron the classical radius as $r_{0}=\frac{e^{2}}{m c^{2}}$, we obtain:

$$
\gamma_{c}=\left[\frac{4 r_{0} \omega_{c}}{3 c}\right] \omega_{c}
$$

Problem 2.1.: Show that for magnetic field of 50 kG , the radiative damping rate of cyclotron motion of a proton is insignificant as compared to that of an electron. Find out the scaling factor of the rate as a function of mass.

Other cooling techniques

Resistive damping - classical treatment only
Force on the charge due to image charge on the electrodes:
$f=-\frac{e \kappa I R}{2 z_{0}}$
Dissipated power on the resistor
$-\dot{z} f=I^{2} R$
Therefore one obtains:
$I=\kappa\left(\frac{e}{2 z_{0}}\right) \dot{Z} \quad$ Since the current is proportional to the velocity
$\mathrm{f}=-\mathrm{m} \gamma_{\mathrm{z}} \dot{Z} \quad$ is a dissipative force

Other cooling techniques

Resistive damping - results from quantum treatment

$$
\gamma_{c}^{\prime}=\frac{4 e^{2} \omega_{+}^{2}}{3 m c^{3}} \frac{\omega_{+}}{\omega_{+}-\omega_{-}} \text {and } \gamma_{m}=\left[\frac{\omega_{-}}{\omega_{+}}\right]^{3} \gamma_{c}^{\prime}
$$

Problem 2.1.:Calculate the damping rate for both modified cyclotron and magnetron motion for an electron in 50kG magnetic field. Comment on the stability of the magnetron motion.

