# Notes to get it from 

http://coldiongroup.wixsite.com/index/manas of Singapore

## Motional state population

$|\psi(0)\rangle=|g\rangle \Sigma_{n=0}^{\infty} c_{n}|n\rangle \quad$ Initial state


The RSB or BSB Rabi frequency scales with n: So drive BSB or RSB and measure the probability of transfer

## Motional state population

probability to be in the ground state after excitation

$$
P_{g}(t)=\langle\psi(t)|\left(|g\rangle\langle g| \otimes \hat{I}_{m}\right)|\psi(t)\rangle
$$

where
$\hat{I}_{m}=\Sigma_{m}|m\rangle\langle m|$

Since we already derived time evolution under RSB or BSB we get
$P_{g}(t)=\frac{1}{2}\left[1+\sum_{n=0}^{\infty} P_{n} \cos \Omega_{n, n+1} t\right] \quad$ after blue sideband excitation
$P_{n}=\left|c_{n}\right|^{2} \quad$ probabilities to be in motional $n$-state

## Motional state after cooling

1. Final state is a thermal state
2. Use $P_{e}(t)=1-P_{g}(t)$
3. Find the probability ratio of red-to-blue sideband excitations

$$
\begin{aligned}
& P_{e}^{R S B}(t)=\sum_{m=1}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{m} \sin ^{2} \Omega_{m, m-1} t \\
& =\frac{\bar{n}}{(\bar{n}+1)} \sum_{m=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{m} \sin ^{2} \Omega_{m+1, m} t \\
& =\frac{\bar{n}}{\bar{n}+1} P_{e}^{B S B}(t)
\end{aligned}
$$

$$
R=\frac{P_{e}^{R S B}}{P_{e}^{B S B}}=\frac{\bar{n}}{\bar{n}+1}
$$ of Singapore

## Other cooling techniques

Radiative damping (applicable only to electrons in Penning traps) - classical treatment only
$-\frac{d E}{d t}=\frac{2 e^{2}}{3 c^{3}} \ddot{\rho}^{2}$
$\frac{d E}{d t}=-\gamma_{c} E$

$$
\begin{aligned}
& \ddot{\rho}=\omega_{c} \times \dot{\rho} \\
& E=\frac{1}{2} m \dot{\rho}^{2} \\
& \gamma_{c}=\frac{4 e^{2} \omega_{c}^{2}}{3 m c^{3}}
\end{aligned}
$$

$E(t)=E_{0} e^{-\gamma_{c} t}$
Introducing for an electron the classical radius as $r_{0}=\frac{e^{2}}{m c^{2}}$, we obtain:

$$
\gamma_{c}=\left[\frac{4 r_{0} \omega_{c}}{3 c}\right] \omega_{c}
$$

Problem 2.1.: Show that for magnetic field of 50kG, the radiative damping rate of cyclotron motion of a proton is insignificant as compared to that of an electron. Find out the scaling factor of the rate as a function of mass.

## Other cooling techniques

Resistive damping - classical treatment only
Force on the charge due to image charge on the electrodes:
$f=-\frac{e \kappa I R}{2 z_{0}}$
Dissipated power on the resistor
$-\dot{z} f=I^{2} R$
Therefore one obtains:
$I=\kappa\left(\frac{e}{2 z_{0}}\right) \dot{z} \quad$ Since the current is proportional to the velocity
$\mathrm{f}=-\mathrm{m} \gamma_{\mathrm{z}} \dot{Z} \quad$ is a dissipative force

## Other cooling techniques

Resistive damping - results from quantum treatment

$$
\gamma_{c}^{\prime}=\frac{4 e^{2} \omega_{+}^{2}}{3 m c^{3}} \frac{\omega_{+}}{\omega_{+}-\omega_{-}} \text {and } \gamma_{m}=\left[\frac{\omega_{-}}{\omega_{+}}\right]^{3} \gamma_{c}^{\prime}
$$

Problem 2.1.:Calculate the damping rate for both modified cyclotron and magnetron motion for an electron in 50kG magnetic field. Comment on the stability of the magnetron motion.

## Ion chain and modes

Potential for a chain of ions under assumptions:

1. Strong radial confinement and weak axial (x) confinement
2. Negligible micromotion

$$
V=\Sigma_{m=1}^{N} \frac{1}{2} M v^{2} x_{m}(t)^{2}+\sum_{m, n=1, m \neq n}^{N} \frac{Z^{2} e^{2}}{8 \pi \epsilon_{0}} \frac{1}{\left|x_{n}(t)-x_{m}(t)\right|}
$$

$$
x_{m}(t) \approx x_{m}^{(0)}+q_{m}(t)
$$

$v$ : angular secular frequency
$M$ : Mass of the ion
$x_{m}^{(0)}$ : equilibrium position of the ion

## Ion chain and modes

The ion's equilibrium will be decided by:

$$
\left[\frac{\partial V}{\partial x_{m}}\right]_{x_{m}=x_{m}^{(0)}}=0
$$

Redefine a new length scale as:

$$
l^{3}=\frac{Z^{2} e^{2}}{4 \pi \epsilon_{0} M v^{2}}
$$

Rescaled equilibrium will be :
$u_{m}=\frac{x_{m}^{(0)}}{l}$

## Ion chain and modes

So we obtain coupled algebraic equations as:

$$
\begin{gathered}
u_{m}-\sum_{n=1}^{m-1} \frac{1}{\left(u_{m}-u_{n}\right)^{2}}+\sum_{n=m+1}^{N} \frac{1}{\left(u_{m}-u_{n}\right)^{2}}=0 \\
(m=1,2, \ldots N)
\end{gathered}
$$

Only for small number analytic solution is possible like:

$$
\begin{array}{ll}
N=2: & u_{1}=-\left(\frac{1}{2}\right)^{\frac{2}{3}},
\end{array} \quad u_{2}=\left(\frac{1}{2}\right)^{\frac{2}{3}}, ~ l l o n=\left(\frac{5}{4}\right)^{\frac{1}{3}}
$$

## Ion chain and modes

Otherwise numerical solutions for higher number:


Important to note the minimum spacing occurs near the center and it obeys empirical relation as

$$
\begin{aligned}
& u_{\min }(N) \approx \frac{2.018}{N^{0.559}} \\
& x_{\min }(N)=\left(\frac{Z^{2} e^{2}}{4 \pi \epsilon_{0} M v^{2}}\right)^{\frac{1}{3}} \frac{2.018}{N^{0.559}}
\end{aligned}
$$

of Singapore

## Ion chain and modes

For larger numbers numerical results provide:


## Ion chain and modes

Quantum fluctuations:
The Lagrangian:
$L=\frac{M}{2} \sum_{m=1}^{N}\left(q_{m}^{\cdot}\right)^{2}-\frac{1}{2} \sum_{n, m=1}^{N} q_{n} q_{m}\left[\frac{\partial^{2} V}{\partial x_{n} \partial x_{m}}\right]_{0}$

The derivative should be taken at $q_{n, m}=0$ and $O\left(q_{n}^{3}\right)$ neglected

More explicitly:

$$
L=\frac{M}{2}\left[\Sigma_{m=1}^{N}\left(q_{m}^{*}\right)^{2}-v^{2} \Sigma_{n, m=1}^{N} A_{n m} q_{n} q_{m}\right]
$$

where

$$
\begin{aligned}
& A_{n m}=-\frac{2}{\left|u_{m}-u_{n}\right|^{3}} \quad n \neq m \\
& A_{n m}=1+2 \Sigma_{p=1, \neq m}^{N} \frac{1}{\left|u_{m}-u_{n}\right|^{3}} \quad n=m
\end{aligned}
$$

## Ion chain and modes

Since matrix A is real, symmetric non-negative and definite, the eigenvalues are therefore non-negative. The eigenvectors are:
$\Sigma_{n=1}^{N} A_{n m} b_{n}^{(p)}=\mu_{p} b_{m}^{(p)}($ where $p=1, \ldots, N)$ and $\mu_{p} \geq 0$

The eigenvectors are ordered in increasing order of eigen values.
The eigenvectors are also normalized as:
$\Sigma_{p=1}^{N} b_{n}^{(p)} b_{m}^{(p)}=\delta_{n m}$
$\Sigma_{n=1}^{N} b_{n}^{(p)} b_{n}^{(q)}=\delta_{p q}$

## Ion chain and modes

The first and second eigenvectors may be evaluated as:

$$
\begin{aligned}
& \mathrm{b}^{(1)}=\frac{1}{\sqrt{N}}\{1,1, \ldots, 1\}, \quad \mu_{1}=1 \\
& \mathrm{~b}^{(2)}=\frac{1}{\sqrt{\sum_{m=1}^{N} u_{m}^{2}}}\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}, \quad \mu_{2}=3
\end{aligned}
$$

Thus for two/three ions:

$$
\begin{array}{rlrl}
N=2: & b^{(1)} & =\frac{1}{\sqrt{2}}(1,1), & \mu_{1}=1 \\
& b^{(1)} & =\frac{1}{\sqrt{2}}(-1,1), & \mu_{2}=3 \\
& & \\
N=3: & b^{(1)} & =\frac{1}{\sqrt{3}}(1,1,1), & \\
\mu_{1}=1 \\
& b^{(2)}=\frac{1}{\sqrt{2}}(-1,0,1), & \mu_{2}=3 \\
& b^{(3)}=\frac{1}{\sqrt{2}}(1,-2,1), & \mu_{3}=\frac{29}{5}
\end{array}
$$

## Ion chain and modes

Thus the normal modes of the ion motion are defined as:

$$
Q_{p}(t)=\Sigma_{m=1}^{N} b_{m}^{(p)} q_{m}(t)
$$

Thus the Lagrangian is:

$$
L=\frac{M}{2} \Sigma_{p=1}^{N}\left[{\dot{Q_{p}}}^{2}-v_{p}^{2} Q_{P}^{2}\right]
$$

With

$$
v_{p}=\sqrt{\mu_{p}} v
$$

## Ion chain and modes

Thus the Hamiltonian becomes:

$$
\widehat{H}=\frac{1}{2 M} \Sigma_{p=1}^{N} P_{p}^{2}+\frac{M}{2} \Sigma_{p=1}^{N} v_{p}^{2} Q_{p}^{2}
$$

Solving the same way as before:

$$
\begin{aligned}
& \widehat{q_{m}(t)}=\Sigma_{p=1}^{N} b_{m}^{(p)} \widehat{Q_{p}}(t) \\
& =i \sqrt{\frac{\hbar}{2 M v N}} \sum_{p=1}^{N} s_{m}^{(p)}\left(\widehat{a_{p}} e^{-i v_{p} t}-{\widehat{a_{p}}}^{T} e^{i v_{p} t}\right)
\end{aligned}
$$

The coupling is: $\quad s_{m}^{(p)}=\frac{\sqrt{N} b_{m}^{(p)}}{\mu_{p}^{\frac{1}{4}}}$

## Ion chain and modes

The coupling is: $\quad s_{m}^{(p)}=\frac{\sqrt{N} b_{m}^{(p)}}{\mu_{p}^{\frac{1}{4}}}$

Example: COM

$$
s_{m}^{(1)}=1 \quad v_{1}=v
$$

Example: BM

$$
s_{m}^{(2)}=\frac{\sqrt{N}}{3^{\frac{1}{4}}} \frac{1}{\left(\sum_{m=1}^{N} u_{m}^{2}\right)^{\frac{1}{2}}} u \_m \quad v_{2}=\sqrt{3} v
$$

## Special motional states

In Heisenberg picture the C operators as defined before are time independent and corresponds to annihilation operator

$$
\begin{aligned}
& \widehat{N}=\hat{C}^{T}(t) \hat{C}(t)=\hat{a}^{T} \widehat{a} \\
& \hat{a}|n\rangle_{v}=\sqrt{n}|n-1\rangle_{v} \\
& \hat{a}^{T}|n\rangle_{v}=\sqrt{n+1}|n+1\rangle_{v} \\
& \widehat{N}|n\rangle_{v}=n|n\rangle_{v}
\end{aligned}
$$

In Schroedinger's picture

$$
\widehat{U}^{T}(t) \widehat{N} \widehat{U}(t)=\hat{C}_{S}^{T}(t) \hat{C}_{S}(t)
$$

## Special motional states

Now in SP the operators and states are:

$$
\begin{aligned}
& \hat{C}_{S}(t)|n, t\rangle=\sqrt{n}|n-1, t\rangle \\
& \hat{C}_{S}^{T}(t)|n, t\rangle=\sqrt{n+1}|n+1, t\rangle
\end{aligned}
$$

$$
|n, t\rangle=\frac{\hat{C}_{S}^{T}(t)}{\sqrt{n!}}|n=0, t\rangle
$$

This can be used in analogy to static harmonic potential with eigen states as Fock states but these are not the energy eigenvalues.

So any motional state can be written as
$|\psi(t)\rangle=\Sigma_{0}^{\infty} c_{n}|n, t\rangle$

## Special motional states (Fock-state)

$$
\begin{array}{ll}
\Omega_{n, n+1}=\Omega_{0} \sqrt{n+1} \eta & \pi-\text { pulse } \\
& C \pi-\text { pulse }
\end{array}
$$



Thus arbitrary Fock state can be prepared
$|\psi(t)\rangle=\Sigma_{0}^{\infty} c_{n}|n, t\rangle$

## Special motional states (coherent state)

Eigen states of annihilation operator are the coherent state:
$\hat{C}_{S}(t)|\alpha\rangle=\alpha|\alpha\rangle$

Using Fock's basis expansion:
$|\alpha\rangle=\Sigma_{0}^{\infty} c_{n}|n\rangle$
$c_{n}=\frac{\alpha^{n}}{\sqrt{n!}} e^{-\frac{|\alpha|^{2}}{2}}$
The probability distribution in number basis is

$$
P_{n}=\left|c_{n}\right|^{2}=|\langle n \mid \alpha\rangle|^{2}=\frac{\overline{n^{n}} e^{-\bar{n}}}{n!} \quad \text { with } \bar{n}=|\alpha|^{2}
$$

## Special motional states (coherent state)

Eigen states of annihilation operator are the coherent state:

$$
\hat{C}_{S}(t)|\alpha\rangle=\alpha|\alpha\rangle
$$

How to generate such a state?
$\widehat{D}(\alpha)=e^{\alpha \hat{C}_{S}^{T}(t)-\alpha^{*} \hat{C}_{S}(t)}|0\rangle=|\alpha\rangle \quad$ Apply Displacement operator
To see it displaces perform similarity transformation
$\widehat{D}^{T}(\alpha) \widehat{a} \widehat{D}(\alpha)=\hat{a}+\alpha$
$\widehat{D}(\alpha) \hat{a} \widehat{D}^{T}(\alpha) \hat{a}=\hat{a}-\alpha$

To get coherent state of phonons just shake the trap

## Special motional states (thermal state)

If the ion is in thermal equilibrium with external heat bath at T the n -th state will have weightage:

$$
w_{n}=e^{-\frac{n \hbar \nu}{k_{B} T}}
$$

It only make sense by average and the average $n$ provides a value of the equilibrium temperature

$$
T=\frac{\hbar v}{k_{B} \ln \left(\frac{\bar{n}+1}{\bar{n}}\right)}
$$

## Special motional states (thermal state)

How to write a thermal state?
$\rho_{t h}=\frac{1}{\bar{n}+1} \sum_{n=0}^{\infty}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}|n\rangle\langle n|$

Measurement of these probabilities are performed by adiabatic passage protocols

## Atomic clock: RF trap

Synchronization of local oscillator to a standard frequency generator


Sun, quartz, atom

## Atomic clock: RF trap



- Sun: Duration of day/night varies with season
- Quartz: strong temperature dependence, varies from sample to sample
- Atoms: universal and fundamental


## Atomic clock: RF trap

Figures of merit for a good clock standard:

- Stability
- High frequency
- Low systematic uncertainties


## Atomic clock: RF trap

Figures of merit for a good clock standard:

Stability

$$
\begin{gathered}
\delta y_{1}=\frac{\delta f}{f_{0_{1}}}=\frac{\delta S}{f_{0}} \frac{1}{\frac{d S}{d f}}=\frac{\delta S}{S_{0} Q \kappa_{S}} \\
Q=\frac{f_{0}}{\Delta \mathrm{f}} \\
\kappa_{S}=\left(\frac{d S}{d f}\right) \frac{\Delta f}{S_{0}} \sim 1
\end{gathered}
$$

## Atomic clock: RF trap

## Stability

for a single feedback cycle:

$$
\delta y_{1}=\frac{\delta f}{f_{0_{1}}}=\frac{\delta S}{f_{0}} \frac{1}{\frac{d S}{d f}}=\frac{\delta S}{S_{0} Q \kappa_{S}}
$$

The important parameter is SNR

## Atomic clock: RF trap

## Stability

for a single feedback cycle: $\quad \delta y_{1}=\frac{\delta f}{f_{0_{1}}}=\frac{\delta S}{f_{0}} \frac{1}{d S}=\frac{\delta S}{S_{0} Q \kappa_{S}}$

Therefore

$$
\sigma_{y}(\tau)=\left(\frac{\delta f}{f_{0}}\right)_{1} \sqrt{\frac{1}{M}}=\frac{\delta S}{f_{0}\left(\frac{d S}{d f}\right)} \sqrt{\frac{T_{m}}{\tau}}=\frac{\delta S}{S_{0} Q \kappa_{S}} \sqrt{\frac{T_{m}}{\tau}}
$$

## Atomic clock: RF trap

## High frequency

$$
\sigma_{y}(\tau)=\frac{\delta S}{S_{0} Q \kappa_{S}} \sqrt{\frac{T_{m}}{\tau}}
$$

The quality factor $Q=\frac{f_{0}}{\delta f}$ for optical transitions it is about $10^{18}$ as compared to $10^{12}$ for microwave.

So candidates are: atoms and ions with transitions in UV

## Atomic clock: RF trap

## Systematic uncertainties

1. Environmental perturbation
2. Electric field
3. Magnetic field
4. Relativistic shifts
5. Doppler shift
6. Gravitational redshift

## Atomic clock: RF trap

## Systematic uncertainties

## Electric field

Electric quadrupole shift due to the Hamiltonian $H_{Q}=\nabla E \cdot Q=\frac{\partial E_{i}}{\partial x_{j}} Q_{i j}$

The gradient is due to the trapping potential: $\phi(x, y, z)=A\left[(1+\epsilon) x^{2}+(1-\epsilon) y^{2}-2 z^{2}\right]$
Magnetic field

Usually the magnetic field applied is weak and hence the effects are much less

Black Body Radiation (BBR) shift

This is AC Stark shift due to BBR at room temperature (usually)

## Atomic clock: RF trap



FIG. 7 (color online). Resonance of the $\mathrm{Al}^{+}$clock transition using quantum logic spectroscopy. From Chou, Hume, Rosenband, and Wineland, 2010.

## PENNING TRAP EXPERIMENTS

Content

1. Precision mass measurements
2. G-factor measurement
3. Other possibilities

## Mass measurement using PT



Frans Michel
Penning



Wolfgang Paul

H.-Jürgen Kluge
H.

## TOF-ICR mass spectrometry



Dipole excitation: magnetron motion


Quadrupole excitation: cyclotron motion

## TOF-ICR mass spectrometry



$$
F_{z}=\vec{\mu} \frac{\partial \vec{B}}{\partial z}
$$




$$
\begin{aligned}
& \left.\boldsymbol{V}_{c}=\frac{1}{2 \pi} \cdot \frac{q}{m} \cdot B^{\substack{x \\
m \\
m}} \right\rvert\, \\
& \left.\begin{array}{cccccccc|} 
\\
2331445 & 2331450 & 2331455 & 2331460 \\
v_{q}
\end{array}\right)
\end{aligned}
$$



## Where does it come from?



## Anti-H: PT

Aim is to test CPT theorem:
Under simultaneous transformation of $\mathrm{C}, \mathrm{P}$ and T the laws of physics remains the same / invariant.
any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry
"the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".
N. Madsen DOI: 10.1098/rsta.2010.0026

## Anti-H: PT



Penning trap with nested trap potential
N. Madsen DOI: 10.1098/rsta.2010.0026

## Anti-H: PT

## Steps for anti-hydrogen production

1. Anti-proton production from $26 \mathrm{GeV} 10^{13}$ protons
2. Produce $\sim 30 \times 10^{6}$ anti-protons at $5 \mathrm{MeV} @ 2$ min
3. Foil to decelerate $5 \times 10^{3}$ are usable $\sim \mathrm{keV}$
4. Loading anti-protons to Penning trap
5. Cooling with electrons - sympathetic cooling
6. Accumulation of positron from sodium decay
7. Production of anti-hydrogen
N. Madsen DOI: 10.1098/rsta.2010.0026

## Anti-H: PT



Penning trap with nested trap potential
N. Madsen DOI: 10.1098/rsta.2010.0026

## g-factor measurements: PT

magnetic field lines


$$
\vec{\mu}=g \frac{e}{2 m} \vec{S}
$$

$$
\hbar \omega_{L}=\vec{\mu} \cdot \vec{B}
$$



Measure Larmor frequency

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

## G-factor measurements: PT

Continuous Stern-Gerlach experiment
magnetic field lines


Reminder: Stern- Gerlach apparatus

analysis trap

$\boxminus$ copper electrodes
$\square$ nickel electrodesapphire insulator
G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191
of Singapore

## G-factor measurements: PT


G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

## G-factor measurements: PT

Continuous Stern-Gerlach experiment



Center frequency can be determined to mHz precision at a frequency of $\sim 300 \mathrm{~Hz}$
G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

## G-factor measurements: PT

Continuous Stern-Gerlach experiment
magnetic field lines



$$
F \hat{z}=-\nabla(\vec{\mu} \cdot \vec{B})=-2 \mu_{z} B_{2} z
$$

The z-motion remains a SHO with a modified frequency

$$
\omega_{z}=\omega_{z 0}+\frac{1}{2} \delta \omega_{z}=\omega_{z 0}+\frac{\mu_{z} B_{2}}{M \omega_{z 0}}
$$

Can be calculated or measured ~ 1T / sqcm

$$
\vec{B}=\overrightarrow{B_{0}}+2 B_{2}\left(\frac{z^{2}-r^{2}}{2} \hat{z}-z \hat{r}\right)
$$

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

## G-factor measurements: PT

Continuous Stern-Gerlach experiment


$$
\omega_{z}=\omega_{z 0}+\frac{1}{2} \delta \omega_{z}=\omega_{z 0}+\frac{\mu_{z} B_{2}}{M \omega_{z 0}}
$$

Acts as the screen
G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

## G-factor measurements: PT

Continuous Stern-Gerlach experiment


Spin flip transitions


Determination of spin-flip frequency
G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

