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Motional state population
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� � Initial state
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The RSB or BSB Rabi frequency scales with n: So drive BSB or RSB 
and measure the probability of transfer 



Motional state population
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probability to be in the ground state after excitation
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where

Since we already derived time evolution under RSB or BSB we get



Motional state after cooling 
1. Final state is a thermal state
2. Use �" � � 1 # ��$�%

3. Find the probability ratio of red-to-blue sideband excitations
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Other cooling techniques
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Radiative damping (applicable only to electrons in Penning 
traps) – classical treatment only
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Introducing for an electron the classical radius as =� �
"2
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obtain:
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Problem 2.1.: Show that for magnetic field of 50kG, the radiative damping rate of 
cyclotron motion of a proton is insignificant as compared to that of an electron. 
Find out the scaling factor of the rate  as a function of mass.
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Other cooling techniques

6

Resistive damping – classical treatment only

Force on the charge due to image charge on the electrodes:

D � #
"EF&

�GH

Dissipated power on the resistor
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Other cooling techniques
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Resistive damping – results from quantum treatment

Problem 2.1.:Calculate the damping rate for both modified cyclotron and 
magnetron motion for an electron in 50kG magnetic field. Comment on the 
stability of the magnetron motion.
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Ion chain and modes
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Potential for a chain of ions under assumptions:

1. Strong radial confinement and weak axial (x) confinement

2. Negligible micromotion

U: angular secular frequency
T: Mass of the ion 
V�

� : equilibrium position of the ion



Ion chain and modes
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The ion’s equilibrium will be decided by:

Redefine a new length scale as :
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Rescaled equilibrium will be :



Ion chain and modes
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So we obtain coupled algebraic equations as:

Only for small number analytic solution is possible like:



Ion chain and modes
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Otherwise numerical solutions for higher number:

Important to note the minimum spacing occurs near the center and it obeys 
empirical relation as 



Ion chain and modes
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For larger numbers numerical results provide:



Ion chain and modes
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The Lagrangian:

The derivative should be 
taken at ]�,� � 0 and 
t$]�

3% neglected 

More explicitly:



Ion chain and modes
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		 where	{ � 1, … , c 	and	vp ~ 0	

Since matrix A is real, symmetric non-negative and definite, the eigenvalues are 
therefore non-negative. The eigenvectors are: 

The eigenvectors are ordered in increasing order of eigen values. 
The eigenvectors are also normalized as:
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Ion chain and modes
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The first and second eigenvectors may be evaluated as:

Thus for two/three ions:



Ion chain and modes
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Up � vpU

Thus the normal modes of the ion motion are defined as :

Thus the Lagrangian is:



Ion chain and modes
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Thus the Hamiltonian becomes:

Solving the same way as before:
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Ion chain and modes
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Special motional states
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In Heisenberg picture the C operators as defined before are time 
independent and corresponds to annihilation operator

In Schroedinger’s picture
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Special motional states
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Now in SP the operators and states are: 

So any motional state can be written as 
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This can be used in analogy to static harmonic potential with eigen states as 
Fock states but these are not the energy eigenvalues.



Special motional states (Fock-state)
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Thus arbitrary Fock state can be prepared
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Special motional states (coherent state)
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The probability distribution in number basis is
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Eigen states of annihilation operator are the coherent state:
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Using Fock’s basis expansion:



Special motional states (coherent state)
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Eigen states of annihilation operator are the coherent state:

��'$�% � � � �

How to generate such a state?

Apply Displacement operator

��� � ���� � � a� � �

�� � ����� � �� � a� # �

To see it displaces perform similarity transformation

To get coherent state of phonons just shake the trap 



Special motional states (thermal state)

24

If the ion is in thermal equilibrium with external heat bath at T the n-th state will 
have weightage:
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It only make sense by average and the average n provides a value of the 
equilibrium temperature
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Special motional states (thermal state)
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How to write a thermal state?

Measurement of these probabilities are performed by adiabatic passage 
protocols
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Atomic clock: RF trap

Synchronization of local oscillator to a standard frequency generator

Sun, quartz, atom

Sun-clock
Capacitor
laser

Gears, 
optical frequency comb

Primary standard

Local oscillator

clockwork
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Atomic clock: RF trap

• Sun: Duration of day/night varies with season
• Quartz: strong temperature dependence, varies from sample to sample
• Atoms: universal and fundamental 



Atomic clock: RF trap
Figures of merit for a good clock standard:

• Stability

• High frequency

• Low systematic uncertainties
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Atomic clock: RF trap
Figures of merit for a good clock standard:

Stability
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Atomic clock: RF trap

Stability

for a single feedback cycle:
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The important parameter is SNR
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Atomic clock: RF trap

Stability

for a single feedback cycle: �£� �
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Atomic clock: RF trap

High frequency

­® ¯ �
¨'

'H¬E�

�̀

°

The quality factor � �
©H

¨©
for optical transitions it is about 10�± as compared to 10�� for 

microwave.

So candidates are: atoms and ions with transitions in UV
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Atomic clock: RF trap

Systematic uncertainties

1. Environmental perturbation

1. Electric field 

2. Magnetic field

2. Relativistic shifts

1. Doppler shift

2. Gravitational redshift
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Atomic clock: RF trap

Systematic uncertainties
Electric field 

Electric quadrupole shift due to the Hamiltonian �¬ � ²9.� �
r0³

r_´
�iµ

The gradient is due to the trapping potential: ¶ V, £, I � n· 1 � [ V� � 1 # [ £� # 2I�¸

Magnetic field

Usually the magnetic field applied is weak and hence the effects are much less

Black Body Radiation (BBR) shift

This is AC Stark shift due to BBR at room temperature (usually)

34
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Atomic clock: RF trap



PENNING TRAP 
EXPERIMENTS
Content
1. Precision mass measurements
2. G-factor measurement
3. Other possibilities

36
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Mass measurement using PT

Wolfgang 
Paul H.-Jürgen KlugeFrans Michel 

Penning
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UG

U-
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:
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νquad
νdip

TOF-ICR mass spectrometry

Dipole excitation: magnetron motion Quadrupole excitation: cyclotron motion

6�	

6-



TOF-ICR mass spectrometry

z

B
F z ∂

∂=
v
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Trap Drift section Detector
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General 
Physics 
fundam. constants 
test of CPT

δm/m ≤ 1·10-10

Atomic 
Physics 
binding energy
QED in HCI

δm/m ≤ 1·10-9

Astro-
physics
nuclear 
synthesis

δm/m ≈ 1·10-7

Weak 
Interactions
symmetry tests
CVC hypothsis δm/m < 3·10-8

Nuclear 
Physics 
mass formula 
models 

δm/m ≈ 1·10-7

Physics & 
Chemistry
basic information 
required

δm/m ≈ 1·10-6



Hans Dehmelt

Frans Michel 
Penning

Wolfgang 
Paul

Seattle Mainz

MIT

MAFF TRAP

e+ TRAP

LEBIT WITCH

HITRAPTRIUMF TRAP

JYFL TRAP

SMILETRAPATHENA

g-factor trap

KVI TRAP

Operational:

CPT

REXTRAP

EXOTRAPS 

EUROTRAPS

Gernot Graeff

CLUSTER TRAP

SCIENCE

NIPNET

HITRAP

ATRAP
ISOLTRAP

Harvard

RETRAP

H.-Jürgen Kluge

SHIPTRAP

Where does it come from?
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Anti-H: PT

N. Madsen DOI: 10.1098/rsta.2010.0026

Aim is to test CPT theorem:

Under simultaneous transformation of C, P and T the laws of physics remains 
the same / invariant.

any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian 
must have CPT symmetry

"the feature of nature that says experimental results are independent of the 
orientation or the boost velocity of the laboratory through space".
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Anti-H: PT

N. Madsen DOI: 10.1098/rsta.2010.0026

Penning trap with nested trap potential
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Anti-H: PT

N. Madsen DOI: 10.1098/rsta.2010.0026

Steps for anti-hydrogen production

1. Anti-proton production from 26 GeV 1013 protons

2. Produce ∼ 30 ? 10º anti-protons at 5 MeV @ 2 min

3. Foil to decelerate 5 ? 103 are usable ∼  :R

4. Loading anti-protons to Penning trap

5. Cooling with electrons – sympathetic cooling

6. Accumulation of positron from sodium decay

7. Production of anti-hydrogen 
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Anti-H: PT

N. Madsen DOI: 10.1098/rsta.2010.0026

Penning trap with nested trap potential
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g-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191
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Measure Larmor frequency

Measure B
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G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

Reminder: Stern- Gerlach apparatus 
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G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

Z
-m
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Cryo-resonator

Cryo-amplifier

LC
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G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

Z
-m

ot
io

n

Cryo-resonator

Cryo-amplifier

LC

Center frequency can be determined to 
mHz precision at a frequency of ~300 Hz
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G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

¹ � ¹� � 2¹�

I� # =�

2
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The z-motion remains a SHO 
with a modified frequency
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1

2
�>G � >G� �

vG¹�

T>G�

Can be calculated or measured ~ 1T / sqcm
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G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

>G � >G� �
1

2
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vG¹�

T>G�

Acts as the screen



53

G-factor measurements: PT

G. Werth et al. Adv. In Atom. Mol. Opt. Phys. 48, 191

Continuous Stern-Gerlach experiment

Spin flip transitions Determination of spin-flip frequency


